
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP/2016-226
2016/10/27

CMS-B2G-16-003

Search for heavy resonances decaying into a vector boson
and a Higgs boson in final states with charged leptons,

neutrinos, and b quarks

The CMS Collaboration∗

Abstract

A search for heavy resonances decaying to a Higgs boson and a vector boson is pre-
sented. The analysis is performed using data samples collected in 2015 by the CMS ex-
periment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV,
corresponding to integrated luminosities of 2.2–2.5 fb−1. The search is performed in
channels in which the vector boson decays into leptonic final states (Z→ νν, W→ `ν,
and Z → ``, with ` = e, µ), while the Higgs boson decays to collimated b quark
pairs detected as a single massive jet. The discriminating power of a jet mass re-
quirement and a b jet tagging algorithm are exploited to suppress the standard model
backgrounds. The event yields observed in data are consistent with the background
expectation. In the context of a theoretical model with a heavy vector triplet, a reso-
nance with mass less than 2 TeV is excluded at 95% confidence level. The results are
also interpreted in terms of limits on the parameters of the model, improving on the
reach of previous searches.
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1 Introduction
The discovery of a Higgs boson H at the CERN LHC [1–3] suggests that the standard model
(SM) mechanism that connects electroweak (EW) symmetry breaking to the generation of par-
ticle masses is largely correct. However, the relatively light value of the Higgs boson mass
mH = 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV [4–7] leaves the hierarchy problem unsolved [8],
pointing to phenomena beyond the SM, which could be unveiled by searches at the LHC. Many
theories that incorporate phenomena beyond the SM postulate the existence of new heavy res-
onances coupled to the SM bosons. Among them, weakly coupled spin-1 Z′ [9, 10] and W′

models [11] or strongly coupled Composite Higgs [12–14], and Little Higgs models [15–17]
have been widely discussed.

A large number of models are generalized in the heavy vector triplet (HVT) framework [18],
which introduces one neutral (Z′) and two electrically charged (W′) heavy resonances. The
HVT model is parametrized in terms of three parameters: the strength gV of a new interaction;
the coupling cH between the heavy vector bosons, the Higgs boson, and longitudinally polar-
ized SM vector bosons; and the coupling cF between the HVT bosons and the SM fermions. In
the HVT scenario, model B with parameters gV = 3, cH = 0.976, and cF = 1.024 [18] is used as
the benchmark. With these values, the couplings of the heavy resonances to fermions and to
SM bosons are similar, yielding a sizable branching fraction for the heavy resonance decay into
a SM vector boson W or Z (generically labeled as V) and a Higgs boson [18].

Bounds from previous searches [19–22] require the masses of these resonances to be above 1 TeV
in the HVT framework. In this mass region, the two bosons produced in the resonance decay
would have large Lorentz boosts in the laboratory frame. When decaying, each boson would
generate a pair of collimated particles, a distinctive signature, which can be well identified in
the CMS experiment. Because of the large predicted branching fraction, the decay of high-
momentum Higgs bosons to bb final states is considered. The Higgs boson is reconstructed as
one unresolved jet, tagged as containing at least one bottom quark. Backgrounds from single
quark and gluon jets are reduced by a jet mass requirement. In order to discriminate against
the large multijet background, the search is focused on the leptonic decays of the vector bosons
(Z→ νν, W→ `ν, and Z→ ``, with ` = e, µ).

The main SM background process is the production of vector bosons with additional hadronic
jets (V+jets). The estimation of this background is based on events in signal-depleted jet mass
sidebands, with a transfer function, derived from simulation, from the sidebands to the signal-
enriched region. Top quark production also accounts for a sizable contribution to the back-
ground in 1` final states, and is determined from simulation normalized to data in dedicated
control regions. Diboson production processes, including pairs of vector bosons (VV) and the
SM production of a Higgs boson and vector boson (VH), represent minor contributions to the
overall background and are estimated from simulation. A signal would produce a localized
excess above a smoothly falling background in the distribution of the kinematic variable mVH,
whose definition and relationship to the resonance mass mX depends on the final state. Results
are interpreted in the context of HVT models in the benchmark scenario B [18].

2 Data and simulated samples
The data samples analyzed in this study were collected with the CMS detector in proton-proton
collisions at a center-of-mass energy of 13 TeV during 2015. The samples correspond to inte-
grated luminosities of 2.2–2.5 fb−1, depending on the final state considered.
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Simulated signal events are generated at leading order (LO) according to the HVT model B [18]
with the MADGRAPH5 aMC@NLO v5.2.2.2 matrix element generator [23]. Different mX hy-
potheses in the range 800 to 4000 GeV are considered, assuming a resonance width narrow
enough (0.1% of the resonance mass) to be negligible with respect to the experimental resolu-
tion. The Higgs boson is required to decay into a bb pair and the vector boson into neutrinos
and charged leptons (e, µ). The contribution of τ decays is also included.

The analysis utilizes a set of simulated samples to characterize the main SM background pro-
cesses. Samples of V+jets events are produced with MADGRAPH5 aMC@NLO and normalized
to the next-to-next-to-leading-order (NNLO) cross section, computed using FEWZ v3.1 [24].
The V boson pT spectra are corrected to account for next-to-leading-order (NLO) QCD and
EW contributions [25]. Top quark pair production is simulated with the NLO POWHEG v2
generator [26–28] and rescaled to the cross section value computed with TOP++ v2.0 [29] at
NNLO. Minor SM backgrounds, such as VV and VH production, and single top quark (t+X)
production in s-channel, t-channel, and in tW associated production, are simulated at NLO
with MADGRAPH5 aMC@NLO . Multijet production is simulated at leading order with the
same generator.

Parton showering and hadronization processes are simulated by interfacing the event gener-
ators to PYTHIA 8.205 [30, 31] with the CUETP8M1 [32, 33] tune. The NNPDF 3.0 [34] parton
distribution functions (PDFs) are used to model the momentum distribution of the colliding
partons inside the protons. Generated events, including additional proton-proton interactions
within the same bunch crossing (pileup) at the level observed during 2015 data taking, are pro-
cessed through a full detector simulation based on GEANT4 [35] and reconstructed with the
same algorithms used for data.

3 CMS detector
The central feature of the CMS detector is a superconducting solenoid of 6 m internal diame-
ter. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL),
each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudo-
rapidity [36] coverage provided by the barrel and endcap detectors. Muons are measured in
gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid.

The silicon tracker measures charged particles within the pseudorapidity range |η| < 2.5. It
consists of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8 T
field of the solenoid. For nonisolated particles of transverse momentum 1 < pT < 10 GeV and
|η| < 1.4, the track resolutions are typically 1.5% in pT and 25–90 (45–150) µm in the trans-
verse (longitudinal) impact parameter [37]. The ECAL provides coverage up to |η| < 3.0. The
dielectron mass resolution for Z → ee decays when both electrons are in the ECAL barrel is
1.9%, and is 2.9% when both electrons are in the endcaps. The HCAL covers the range of
|η| < 3.0, which is extended to |η| < 5.2 through forward calorimetry. Muons are measured in
the pseudorapidity range |η| < 2.4, with detection planes made using three technologies: drift
tubes, cathode strip chambers, and resistive-plate chambers. Combining muon tracks with
matching tracks measured silicon tracker results in a pT resolution of 2–10% for muons with
0.1 < pT < 1 TeV [38].

The first level (L1) of the CMS trigger system, composed of custom hardware processors, uses
information from the calorimeters and muon detectors to select the most interesting events
in a fixed time interval of less than 4 µs. The high-level trigger (HLT) processor farm further
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decreases the event rate from around 100 kHz to about 1 kHz, before data storage.

A detailed description of the CMS detector, together with a definition of the coordinate system
used and the relevant kinematic variables, can be found in Ref. [36].

4 Event reconstruction
In CMS, a global event reconstruction is performed using a particle-flow (PF) algorithm [39, 40],
which uses an optimized combination of information from the various elements of the CMS de-
tector to reconstruct and identify individual particles produced in each collision. The algorithm
identifies each reconstructed particle either as an electron, a muon, a photon, a charged hadron,
or a neutral hadron.

The PF candidates are clustered into jets using the anti-kT algorithm [41] with a distance pa-
rameter R = 0.4 (AK4 jets) or R = 0.8 (AK8 jets). In order to suppress the contamination from
pileup, charged particles not originating from the primary vertex, taken to be the one with
the highest sum of p2

T over its constituent tracks, are discarded. The residual contamination is
removed on the basis of the event energy density and proportionally to the jet area using the
FASTJET package [42, 43]. Jet energy corrections, extracted from simulation and data in multijet,
γ+jets, and Z+jets events, are applied as functions of the transverse momentum and pseudo-
rapidity to correct the jet response and to account for residual differences between data and
simulation. The jet energy resolution amounts typically to 5% at 1 TeV [44]. Jets are required
to pass an identification criterion, based on the jet composition in terms of the different classes
of PF candidates, in order to remove spurious jets arising from detector noise. The pruning
algorithm [45], which is designed to remove contributions from soft radiation and additional
interactions, is applied to AK8 jets. The pruned jet mass mj is defined as the invariant mass
associated with the four-momentum of the pruned jet, after the application of the jet energy
corrections [44]. The AK8 jets are split into two subjets using the soft drop algorithm [46, 47].

The combined secondary vertex algorithm [48] is used for the identification of jets that originate
from b quarks (b tagging). The algorithm uses the tracks and secondary vertices associated with
AK4 jets or AK8 subjets as inputs to a neural network to produce a discriminator with values
between 0 and 1, with higher values indicating a higher b quark jet probability. The loose and
the tight operating points are about 85 and 50% efficient, respectively, for b jets with pT of about
100 GeV, with a false-positive rate for light-flavor jets of about 10 and 0.1%.

The missing transverse momentum vector ~pmiss
T is defined as the projection of the negative

vectorial sum of the momenta of all PF candidates onto the plane perpendicular to the beams,
and its magnitude is referred to as Emiss

T . The missing hadronic activity Hmiss
T is defined as

the magnitude of the negative vectorial sum of the transverse momenta of all AK4 jets with
pT > 20 GeV. Corrections for the Emiss

T detector response and resolution are derived from
γ+jets and Z+jets events, and applied to simulated events [49].

Electrons are reconstructed in the fiducial region |η| < 2.5 by matching the energy deposits in
the ECAL with tracks reconstructed in the tracker [50]. The electron identification is based on
the distribution of energy deposited along the electron trajectory, the direction and momentum
of the track in the inner tracker, and its compatibility with the primary vertex of the event.
Additional requirements are applied to remove electrons produced by photon conversions.
Electrons are further required to be isolated from other activity in the detector. The electron
isolation parameter is defined as the sum of transverse momenta of all the PF candidates (ex-
cluding the electron itself) within ∆R =

√
(∆η)2 + (∆φ)2 < 0.3 around the electron direction,
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after the contributions from pileup and other reconstructed electrons are removed. Photons
are reconstructed as energy clusters in the ECAL, and are distinguished from jets and electrons
using information that includes isolation and the transverse shape of the ECAL energy deposit.

Muons are reconstructed within the acceptance of the CMS muon systems, |η| < 2.4, using the
information from both the muon spectrometer and the silicon tracker [38]. Muon candidates are
identified via selection criteria based on the compatibility of tracks reconstructed from silicon
tracker information only with tracks reconstructed from the combination of the hits in both
the tracker and muon detector. Additional requirements are based on the compatibility of the
trajectory with the primary vertex, and on the number of hits observed in the tracker and muon
systems. The muon isolation is computed from reconstructed tracks within a cone ∆R < 0.3
around the muon direction, ignoring the muon itself.

Hadronically decaying τ leptons are reconstructed combining one or three hadronic charged
PF candidates with up to two neutral pions, the latter also reconstructed by the PF algorithm
from the photons arising from the π0 → γγ decay [51].

5 Event selection
The set of criteria used to identify the Higgs boson candidate is the same for each event cate-
gory. The highest-pT AK8 jet in the event is required to have pT > 200 GeV and |η| < 2.5. The
pruned jet mass mj must satisfy 105 < mj < 135 GeV. The region 65 < mj < 105 GeV is not
used, to avoid overlaps with searches targeting resonant VV final states. In order to discrimi-
nate against the copious vector boson production in association with light-flavored jets, events
are classified according to the number of subjets (1 or 2) passing the loose b tagging selection;
those failing this requirement are discarded.

Events are divided into categories depending on the number (0, 1, or 2) and flavor (e or µ) of
the reconstructed charged leptons, and the presence of either 1 or 2 b-tagged subjets in the AK8
jet. The two categories with no charged leptons are referred to collectively as the zero-lepton
(0`) channel. Similarly, the single-lepton (1`) and double-lepton (2`) channels each comprise
four categories. In total, 10 exclusive categories are defined.

In the 0` channel, candidate signal events are expected to have a large Emiss
T due to the boosted

Z boson decaying into a pair of neutrinos, which escape undetected. Data are collected using
triggers that require Emiss

T or Hmiss
T greater than 90 GeV, without including muons in the Emiss

T or
Hmiss

T computation. A stringent selection is applied to the reconstructed Emiss
T , which is required

to be greater than 200 GeV, to ensure that the trigger is fully efficient. The copious multijet pro-
duction is greatly suppressed by imposing requirements on the minimum azimuthal angular
separations between jets and the missing transverse momentum vector, ∆φ(jet,~pmiss

T ). All the
AK8 and AK4 jets in the event must satisfy ∆φ(jet,~pmiss

T ) > 0.5. The Higgs boson jet candidate
must fulfill the tighter requirement ∆φ(jet,~pmiss

T ) > 2 and additional criteria designed to re-
move events arising from detector noise. Events containing isolated leptons with pT > 10 GeV,
hadronically-decaying τ leptons with pT > 18 GeV, and photons with pT > 15 GeV are re-
moved in order to reduce the contribution of other SM processes. The tt background contri-
bution is reduced by removing events in which any AK4 jet, excluding the Higgs boson jet
candidate, is b tagged using the loose operating point. Because of the lack of visible decay
products from the Z boson, reconstruction of the resonance mass is not directly viable. In-
stead, the Higgs boson jet momentum and the ~pmiss

T are used to compute the transverse mass

mT
VH =

√
2Emiss

T Ejet
T [1− cos ∆φ(jet,~pmiss

T )]. This variable is utilized as an estimator of mX for the
0` channel.
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Events in the 1` channel are collected requiring one lepton to be reconstructed online. The pT
threshold at trigger level is 105 GeV for electrons and 45 GeV for muons. Offline, events are
accepted if there is exactly one reconstructed electron or muon with pT larger than 135 GeV
or 55 GeV, respectively, passing restrictive selection criteria. Events with additional leptons
passing looser selections, or hadronically decaying τ leptons, are discarded. In the single-
electron channel, multijet background is reduced by requiring Emiss

T > 80 GeV. Azimuthal
angular separations ∆φ(`,~pmiss

T ) < 2 and ∆φ(jet,~pmiss
T ) > 2 are required to select a back-to-

back topology. As for the 0` selection, events with additional b-tagged AK4 jets are vetoed.
The four-momentum of the W boson candidate is quantified using a kinematic reconstruction
of the neutrino momentum. The components of the neutrino momentum in the transverse
plane are assumed to be equal to ~pmiss

T . By constraining the invariant mass of the charged
lepton and neutrino to be equal to the W boson mass, a quadratic equation is derived for the
longitudinal component of the neutrino momentum, pν

z . The reconstructed pν
z is chosen to be

the real solution with the lower magnitude or, where both the solutions are complex, the real
part with the lowest value. If the W boson has a transverse momentum greater than 200 GeV,
it is used to construct the resonance candidate mass mVH, otherwise the event is discarded.

The 2` channel accepts events collected with the same triggers as in the 1` channel. An ad-
ditional isolated electron or muon with pT > 20 GeV, with the same flavor as the leading one
and opposite charge, is required to be reconstructed and identified. In order to increase the
signal efficiency, a looser identification requirement is applied to both electrons, and one of
the two muons is allowed to be identified only in the tracker. If the isolation cones of the two
muons overlap, the contribution of one is subtracted from the isolation calculation of the other
in each case. The Z boson candidates are retained only if the dilepton invariant mass lies be-
tween 70 and 110 GeV. The transverse momentum of the Z boson candidate is required to be
at least 200 GeV, otherwise the event is removed. Additionally, the separation in η and φ be-
tween the Z boson candidate and the Higgs boson jet is required to satisfy |∆η(Z, jet)| < 5 and
∆φ(Z, jet) > 2.5. Since the tt contribution is small, no veto on additional b-tagged AK4 jets is
applied. The resonance candidate mass mVH is defined as the invariant mass of the Z boson
and the AK8 jet.

The signal efficiency for the combined 0`, 1`, and 2` channels following these selections is 20–
30% for the 2 b-tagged subjet categories for a resonance mass mX = 1 TeV, decreasing to about
10% for mX = 4 TeV. The 1 b-tagged subjet categories provide an additional 10% efficiency at
mX = 1 TeV, rising to 20% at mX = 4 TeV.

6 Background estimation
The main source of background events originates from the production of a vector boson in as-
sociation with jets, and the subsequent decay of the vector boson into one of the considered
leptonic final states. This background is relevant both when genuine b jets are identified and
when a jet originating from a lighter quark or a gluon is misidentified as originating from a
b quark. In the 1` and 2` channels, the main contributions are due to W → `ν and Z → ``
processes, respectively. In the 0` channel Z → νν and W → `ν processes account for approx-
imately 60% and 40% of the V+jets background, respectively. In the latter case, the lepton is
either emitted outside the detector acceptance, or is not reconstructed and identified. A sizable
background originates from b jets and W bosons from top quark decays. Minor contributions
come from t+X, VV, VH, and multijet processes.

The normalization of the top quark background (tt and t+X) is determined in top quark en-
riched control regions where the simulated mj and mVH distributions are also checked against
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data. Four top quark control regions are defined, depending on the number of reconstructed
leptons (0 or 1) and the number of b-tagged subjets (1 or 2). The top quark control regions are
defined by inverting the b tagging veto on the AK4 jets in the event, and by applying a tight b
tagging selection to obtain a tt sample with higher purity. Data are found to be in agreement
with the shape of the simulated mj and mVH distributions. Multiplicative scale factors are de-
rived for each region from the difference in normalization between data and simulation, after
subtracting the contribution of the other backgrounds from the data. These factors, reported
in Table 1, are applied to correct the normalization of the tt and t+X background. In the dilep-
ton channel, due to the small number of events, the tt normalization and shape are taken from
simulation.
Table 1: Scale factors derived for the normalization of the estimated tt and t+X backgrounds
from simulation, for different event categories. Electron and muon categories are merged. Un-
certainties due to the limited size of the event samples (stat) and the uncertainty in the b tagging
efficiency (syst) are reported separately.

category scale factor stat syst

1 b tag
1` 0.82 ±0.03 ±0.04
0` 0.85 ±0.06 ±0.04

2 b tag
1` 0.83 ±0.07 ±0.04
0` 0.54 ±0.13 ±0.02

The contribution of the dominant V+jets background is estimated through a procedure based
on data. Signal-depleted samples are defined, containing events that pass all selections de-
scribed in Section 5 apart from the requirement on the pruned jet mass. Two mj sidebands (SB)
are considered, and used to predict the background contributions in the signal region (SR).
The lower and upper sidebands accept events falling in the ranges 30 < mj < 65 GeV and
mj > 135 GeV, respectively. Analytic functions are fitted to the distributions of mj found in sim-
ulation, considering separately V+jets, tt and t+X, and all SM diboson production processes.
The mj spectrum in V+jets events consists of a smoothly falling distribution, while diboson
samples present one or two peaks corresponding to the W/Z and Higgs boson masses. Top
quark samples have instead one peak in the mj spectrum for hadronically decaying W bosons
and one for the top quark itself, in events where the hadronic W boson or top quark is recon-
structed within the selected AK8 jet.

The shape and normalization of the mj distribution for the main V+jets background is extracted
from a fit of the sum of all contributing processes to the SB data, after fixing the shape and
normalization of the subdominant backgrounds. The fits to the mj distributions are shown in
Fig. 1. The normalization of the diboson processes is derived from simulation, while the top
quark normalization is taken from the control regions with the exception of the dilepton chan-
nels. The procedure is repeated selecting an alternative function to model the mj distribution
for the main background. The difference between the results obtained with the main and the
alternative function is considered as a systematic uncertainty. The number of expected and
observed events in the SR are reported separately for each category in Table 2. A deficit of 2.4
standard deviations is observed in the 1µ, 2 b tag category.

The shape of the V+jets background distribution in the mVH variable is obtained via a transfer
function determined from simulation as:

α(mVH) =
Nsim,V+jets

SR (mVH)

Nsim,V+jets
SB (mVH)

(1)

where Nsim,V+jets
SR (mVH), Nsim,V+jets

SB (mVH) are two-parameter probability density functions de-
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Figure 1: Pruned jet mass distribution of the leading AK8 jet in the 0` (upper), 1` (middle), and
2` (lower) categories, and separately for the 1 (left) and 2 (right) b-tagged subjet selections. The
shaded band representing the uncertainty from the fit to data in the pruned jet mass sidebands.
The observed data are indicated by black markers. The dashed vertical lines separate the lower
(LSB) and upper (HSB) sidebands, the W and Z bosons mass region (VR), and the signal region
(SR). The bottom panels report the pulls in each bin, (Ndata − Nbkg)/σ, where σ is the Poisson
uncertainty in data. The error bars represent the normalized Poisson errors on the data.
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Table 2: Expected and observed numbers of events in the signal region, for all event cate-
gories. Three separate sources of uncertainty in the expected numbers are reported: statistical
uncertainty from the fit procedure (fit), the shape of the top quark and diboson background
distributions (tt, VV), and the difference between the nominal and alternative function choice
for the fit (alt. function).

category
events uncertainties

observed expected fit tt, VV alt. function

1 b tag

0` 47 49.5 ±8.5 ±0.4 ±6.9
1e 57 73 ±23 ±1 ±6
1µ 119 123 ±8 ±1 ±5
2e 7 4.8 ±1.1 ±0.1 ±1.0
2µ 19 13.2 ±1.8 ±0.1 ±0.8

2 b tag

0` 6 8.0 ±1.3 ±0.2 ±1.2
1e 7 8.7 ±1.0 ±0.3 ±0.5
1µ 14 29.5 ±3.4 ±1.0 ±0.9
2e 2 1.1 ±0.5 ±0.1 ±0.1
2µ 1 1.9 ±0.7 <0.1 ±0.3

termined from the mVH spectra in the SR and the SB of the simulated V+jets sample, respec-
tively. The ratio α(mVH) accounts for the correlations and the small kinematic differences in-
volved in the interpolation from the sidebands to the SR, and is largely independent of the
shape uncertainties and the assumptions on the overall cross section. The shape of the main
background is extracted from data in the mj sidebands, after multiplying the obtained distribu-

tion by the α(mVH) ratio. The overall predicted background distribution in the SR, Npred
SR (mVH),

is given by the following relation:

Npred
SR (mVH) = Nobs,V+jets

SB (mVH) α(mVH) + Nsim,tt
SR (mVH) + Nsim,VV

SR (mVH) (2)

where Nobs,V+jets
SB (mVH) is the probability distribution function obtained from a fit to data in the

mj sidebands of the sum of the background components, and Nsim,tt
SR (mVH) and Nsim,VV

SR (mVH)
are the tt and diboson components, respectively, fixed to the shapes and normalizations derived
from the simulated samples and control regions. The observed data in the SR are in agreement
with the predicted background, as shown in Fig. 2.

The validity and robustness of this method is tested on data by splitting the lower mj sideband
in two and predicting shape and normalization of the intermediate sideband from the lower
and upper sidebands. The number of events and distributions found in data are compatible
with the prediction within the systematic uncertainties.

The shape of the reconstructed signal mass distribution is extracted from the simulated signal
samples. The signal shape is parametrized separately for each channel with a Gaussian peak
and an exponential to model the lower tails. The resolution of the reconstructed mVH is given
by the width of the Gaussian core for the 1` and 2` channels and by the RMS of the mT

VH
distribution in the 0` channel, and is found to be 10–16%, 8–5%, 5–3% of mX in the 0`, 1`, and
2` channels, respectively, depending on the mass of the resonance.

7 Systematic uncertainties
The sensitivity of this analysis is limited by statistical rather systematic uncertainties.
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Figure 2: Resonance candidate mass mVH distributions in the 0` (upper), 1` (middle), and 2`
(lower) categories, and separately for the 1 (left) and 2 (right) b-tagged subjet selections. The
expected background events are shown with the filled area, and the shaded band represents
the total background uncertainty. The observed data are indicated by black markers, and the
potential contribution of a resonance with mX = 2000 GeV produced in the context of the HVT
model B with gV = 3 is shown with a solid red line. The bottom panels report the pulls in each
bin, (Ndata − Nbkg)/σ, where σ is the Poisson uncertainty in data. The error bars represent the
normalized Poisson errors on the data.
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The systematic uncertainty in the V+jets background yield is dominated by the statistical un-
certainty associated with the number of data events in the mj sideband. Minor contributions
arise from the propagation of the uncertainties in the shape of the function modeling the mj
distributions of the tt and VV backgrounds. The tt and t+X normalization uncertainty, in the
0` and 1` categories, originates from the limited number of events in the top quark control re-
gions. The diboson normalization uncertainty depends on the propagation of the theoretical
uncertainties in the relevant phase space, and is estimated to be 20%. Given the rather large
scale factor observed in the 0`, 2 b tag tt control region, the top quark normalization uncertainty
in the 2` category is conservatively taken to be 50%.

The uncertainties in the V+jets background shape are estimated from the covariance matrix of
the fit to data of the mVH distribution in the sideband regions and from the uncertainties in the
modeling of the α(mVH) ratio, which depends on the number of data and simulation events,
respectively.

Other sources of uncertainty affect both the normalization and shape of the simulated signal
and the subdominant backgrounds. The uncertainties in the trigger efficiency and the electron,
muon, and τ lepton reconstruction, identification, and isolation are evaluated through specific
studies of events with dilepton masses in the region of the Z peak, and amount to a 6–8% un-
certainty for the categories with charged leptons, and 3% in the 0` categories. In the 1` and
2` categories, the lepton energy scale and resolution are propagated to the signal shape, and
the resulting uncertainties in the mean and the width of the signal model are estimated to be
as large as 16% and 10%, respectively, depending on the lepton flavor and signal mass. The
jet energy scale and resolution [44] affect both shape and selection efficiencies. The jet energy
corrections, propagated to the jet mass, are also taken into account, and are responsible for a
5% variation in the background, and a variation of 1–3%, depending on the mass hypothesis,
in the number of signal events. The jet energy resolution accounts for an additional 2–3% un-
certainty. The effects are propagated to the mVH distributions and considered as uncertainties
in the subdominant backgrounds and signal samples. As a result, in the signal sample a 0.3%
uncertainty is assigned to the mean of the signal shape, and 1.0% to the width.

The efficiency for signal events to enter the SR jet mass window is evaluated with HERWIG [52,
53] as an alternative showering algorithm. The 7% difference observed with respect to the
default PYTHIA showering is taken to be the systematic uncertainty.

Uncertainties on the b tagging efficiency [48] represent the largest source of normalization un-
certainty for samples that are not normalized to data. For the signal efficiency, these uncertain-
ties in the yield of between 4–15% and 8–30%, depending on mVH, are estimated in the 1 and
2 b-tagged subjet categories, respectively; for background events, respective uncertainties of 5
and 12% are found in the two cases. An additional 10% b tagging uncertainty is assigned to the
tt background to account for the extrapolation from the top quark control region to the SR.

The factorization and renormalization scale uncertainties associated with the event generators
are estimated by varying the corresponding scales up and down by a factor of 2, and are re-
sponsible for a 5% normalization variation in the estimated diboson background. The effect
of these scale uncertainties is propagated to the tt and VV background distributions, and the
difference in the mVH distribution parameters is taken as an additional shape uncertainty. The
effect on the signal shape modeling is negligible, and the resulting normalization uncertainty
is 4–12%, depending on mVH.

Additional systematic uncertainties affecting the normalization of backgrounds and signal from
pileup contributions (3 and 0.5%), integrated luminosity (2.7%) [54], Emiss

T scale and resolution
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(1% in the 0` channel), and the choice of PDFs [55] (3% for acceptance, and 4–18% for signal
normalization) are also included in the analysis.

8 Results and interpretation
Results are obtained from a combined signal and background fit to the unbinned mVH dis-
tribution, based on a profile likelihood. Systematic uncertainties are treated as nuisance pa-
rameters and are profiled in the statistical interpretation [56–59]. The background-only hy-
pothesis is tested against the X → VH signal in the ten categories. The asymptotic modi-
fied frequentist method is used to determine limits at 95% confidence level (CL) on the con-
tribution from signal. Limits are derived on the product of the cross section for a heavy
vector boson X and the branching fractions for the decays X → VH and H → bb, denoted
σ(X)B(X → VH)B(H → bb). The 0` and 2` categories are combined to provide upper limits
for the case where X is a heavy spin-1 vector singlet Z′, in the narrow-width approximation.
Similarly the 1` categories are combined to provide limits for the case where X is a heavy W′.
The exclusion limits are reported in Fig. 3. These limits are verified with the modified fre-
quentist CLs method, obtaining results compatible with those obtained with the asymptotic
formula.

The result of this study is primarily interpreted in the context of a simplified model with a
triplet of heavy vector bosons (V±, V0) [18]. The predictions of the benchmark model B are
superimposed on the exclusion limits in Fig. 3. All the 0`, 1`, and 2` channels are combined
to put stringent exclusion limits on the HVT model, scenario B, assuming the Z′ and W′ cross
sections as predicted by the model. There are normalization increases caused by event migra-
tion between the leptonic channels, which are estimated to be 5–10% in the 0` channel, due
to mis-assigned W′ events, and less than 1% in the 1` channel, due to mis-assigned Z′ events.
Figure 4 presents the exclusion limits as a function of the heavy triplet mass. A resonance with
mX . 2.0 TeV is excluded at 95% CL in the HVT model B.

The exclusion limit shown in Fig. 4 can be interpreted as a limit in the
[
gVcH, g2cF/gV

]
plane

of the HVT parameters, where g represents the electroweak coupling constant. The excluded
region of the parameter space for narrow resonances relative to the combination of all the con-
sidered channels is shown in Fig. 5. The fraction of the parameter space where the natural
width of the resonances is larger than the typical experimental resolution of 5%, and thus the
narrow width approximation is not valid, is also indicated in Fig. 5. The exclusion of the pa-
rameter space significantly improves on the reach of

√
s = 8 TeV searches in the 1` [22] and

all-hadronic channels [20].

9 Summary
A search for a heavy resonance with mass between 800 and 4000 GeV, decaying into a vector
boson and a Higgs boson, has been described. The data samples were collected by the CMS
experiment at

√
s = 13 TeV during 2015, and correspond to integrated luminosities of 2.2–2.5

fb−1, depending on the channel. The final states explored include the leptonic decay modes
of the vector boson, events with zero (Z → νν), exactly one (W → `ν), and two (Z → ``)
charged leptons, with ` = e, µ. Higgs bosons are reconstructed from their decays to bb pairs.
Depending on the resonance mass, upper limits in the range 10–200 fb are set on the product
of the cross section for a narrow spin-1 resonance and the branching fractions for the decay of
the resonance into a Higgs and a vector boson, and for the decay of the Higgs boson into a pair
of b quarks. Resonances with masses lower than 2 TeV are excluded within the heavy vector
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Figure 3: Observed and expected 95% CL upper limits on σ(Z′)B(Z′ → ZH)B(H → bb)
(left) and σ(W′)B(W′ → WH)B(H → bb) (right) as a function of the resonance mass for a
single narrow spin-1 resonance, including all statistical and systematic uncertainties. The inner
green and outer yellow bands represent the ±1 and ±2 standard deviation uncertainties on
the expected limit. The red solid curve corresponds to the cross sections predicted by the HVT
model B with gV = 3.

triplet model in the benchmark scenario B with gV = 3. These results represent a significant
reduction in the allowed parameter space for the large number of models generalized within
the heavy vector triplet framework.
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M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, A. König,
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M. Bartók19, P. Raics, Z.L. Trocsanyi, B. Ujvari



23

National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati, S. Choudhury21, P. Mal, K. Mandal, A. Nayak22, D.K. Sahoo, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur,
R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia

University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin,
N. Nishu, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh,
N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy,
S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty14, P.K. Netrakanti, L.M. Pant,
P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhowmik23, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar,
M. Maity23, G. Majumder, K. Mazumdar, T. Sarkar23, N. Wickramage24

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Behnamian, S. Chenarani25, E. Eskandari Tadavani, S.M. Etesami25, A. Fahim26, M. Khakzad,
M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi27, F. Rezaei Hosseinabadi,
B. Safarzadeh28, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald
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INFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Napoli, Italy, Università della
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L. Alunni Solestizia,b, G.M. Bileia, D. Ciangottinia ,b, L. Fanòa ,b, P. Laricciaa ,b, R. Leonardia ,b,
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